Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя — основанием. По определению, правильный треугольник также является равнобедренным, но обратное утверждение неверно.
- Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов.
- Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
- Равнобедренный треугольник имеет максимальную вписанную окружность среди иных треугольников, имеющих одинаковые основание b и высоту h .
Пусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, h — высота равнобедренного треугольника, и — соответствующие углы, R — радиус описанной окружности, r — радиус вписанной.
Стороны могут быть найдены следующим образом:
Радиус вписанной окружности может быть выражен шестью способами в зависимости от того, какие два параметра равнобедренного треугольника известны:
Углы могут быть выражены следующими способами:
Периметр равнобедренного треугольника может быть вычислен любым из следующих способов:
(по определению);
(следствие теоремы синусов).
Площадь треугольника может быть вычислена одним из следующих способов:

.

